Exercise
⊕
Problem
2
你好,这里是我的个人网站数学分析的每周一题栏目(数学分析每周一题,其中数学分析指的是数学中的分析学, 主要包括微积分,实分析,复分析)
——————Alina Lagrange
Let
1
≤
p
<
∞
,
L
p
(
[
0
,
1
]
,
d
m
)
be the completion of
C
[
0
,
1
]
with the norm:
‖
f
‖
p
=
(
∫
0
1
|
f
(
x
)
|
p
d
m
)
1
p
,
where
d
m
is the Lebesgue measure. Show that
lim
λ
→
∞
λ
p
m
{
x
|
|
f
(
x
)
|
>
λ
}
=
0
P
r
o
o
f
.
Let
f
∈
L
p
(
1
≤
p
<
∞
)
then
lim
λ
→
∞
m
(
E
=
{
x
|
f
(
x
)
>
λ
}
)
=
0
And suppose the set
e
satisfies
m
(
e
)
→
0
,
e
⊂
E
=
[
0
,
1
]
then
∫
e
|
f
(
x
)
|
d
m
→
0
∫
0
1
|
f
(
x
)
|
p
d
m
=
∫
{
x
|
|
f
(
x
)
|
>
λ
}
|
f
(
x
)
|
p
d
m
+
∫
{
x
|
|
f
(
x
)
|
≤
λ
}
|
f
(
x
)
|
p
d
m
then
λ
p
m
{
x
|
|
f
(
x
)
|
>
λ
}
≤
∫
{
x
|
|
f
(
x
)
|
>
λ
}
|
f
(
x
)
|
p
d
m
→
0
,
λ
→
∞
点这返回我的主页
点这返回题目目录
点这返回我的主页
点这返回题目目录